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SETTLING T~IE OF LIQUID IN TANKS UNDER THE ACTION OF 

MINOR OVERLOADING 

�9 K. Kalinin and V. A. Nevrovskii UDC 532.529 

A theoretical model is proposed for determining the time to, which is the basis 
for the concept of ascent and division of large gas bubbles in liquid. The 
estimate of to given by this model isin qualitative agreement with experiment. 

One method of ensuring continuity of a liquid flow pumped out from a tank under reduced 
gravitation is to apply a small acceleration g to the tank (g < go). Under the action of 
this acceleration, the liquid flows toward the intake unit (conventionally, downward) and the 
bubbles of pressurization gas and liquid vapor which it contains move to the opposite wall of 
the tank (float upward). 

To estimate the time of this process to, various models are proposed. In [i], for 
example, it was recommended that liquid motion be considered by analogy with the free fall of 
a solid in a field g << go and that the fall time tfall be determined from the formula 

s -  (1) 
2 

Experiments [i] show that to > tfall, and it was recommended in [i] that the value to = 
(2-5)tfall be taken. This means that in to, as well as tfall , account is taken of the 
time of partial damping of the liquid, the time of bubble ascent, and possibly the duration 
of other processes. 

The practical recommendation of [i] as regards determining to is now justified, by con- 
sidering the ascent of gas bubbles in the liquid under the action a small accelera- 
tion g = (i0-2)-(i0-4)go rather than the fall of the liquid to the intake unit. It is 
assumed that the pressurization gas is initially concentrated in a single bubble, which is 
at the intake unit and then moves to the opposite end of the tank. As the bubble rises, it 
breaks down into several smaller bubbles, which also, in turn, break down further, thus 
creating a cluster of bubbles. 

To describe the motion of an individual bubble, the semiempirical approach of [2] is 
used. According to [2], the velocity of steady motion of so-called large bubbles does not 
depend on their size 
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Fig. i Fig. 2 

Fig. i. Form of ascending large bubble. 

Fig. 2. Dimensionless velocity of ascent of large bubbles as a function of 
dimensionless time. 
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Fig. 3. Velocity difference of relay of slow bubbles. Each discontinuity 
in the graph corresponds to the next division of the bubble; v, m/sec; t, sec. 

Fig. 4. Path traveled by the relay of slow bubbles when they break down 
into eight equal parts (curve i) and into two parts (2). Curve 3 is plotted 
according to Eq. (I) for the free fall of liquid; S, m. 
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This  v e l o c i t y  i s  e s t a b l i s h e d  when t h e  Arch imedes  f o r c e  and t h e  f o r c e  of  l i q u i d  r e s i s t a n c e  to  
t he  b u b b l e  m o t i o n  F re  s a r e  e q u a l .  The fo rmu la  f o r  F r e  s i s  

F -- a~P~v~ V. (3) 
res 4~ ~ 

Large bubbles differ from moderate-size bubbles in that they are formed in ascent and 
take the form shown schematically in Fig. i, whereas the moderate-size bubbles remain 
practically spherical. According to [2], the critical bubble radius according to which they 
may be classified as large or medium (or in other words, of moderate size) is 

( 324~2~ )l /5 
f 

,~r PL g2 (4) 
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When r > rcr , the bubbles are said to be large; when r < rcr they are of moderate size. 
Bubbles of moderate size ascend at a velocity depending on their size as follows 

I g r  ~ 
v___ ( 5 )  

9 v 

With sudden application of an acceleration g to the liquid, the large bubble begins to rise 
at an acceleration (disregarding the drag force of the liquid) 

dv PL -- PG 
- -  - -  g [ 6 )  

dt (Pr, + ~PL) 

The coefficient of added liquid mass ~ for the bubble considered as a solid body depends on 
the shape of the bubble, the shape of the tank, and the ratio of their dimensions. For a 
deformed bubble, ~ is unknown in advance, but is evidently close to $ = i. In fact, for a 
rigid sphere immersed in an infinite liquid ~ = i/2. If the tank is regarded as a sphere 
of radius b and the bubble as an undeformed sphere of radius c, then [3] 

b 3 + 3c z 

2b z __ 2c ~ 

Then, with a radius ratio b/c = 1.2-3, $ varies from 2.56 to 0.56. Therefore, ~ = i may be 

assumed for rough calculations. 

In fact, large bubbles are unstable, and break down into several smaller bubbles as they 
move. The criterion characterizing their breakdown is 

3 -- ~ 1 
r ~ r* :-- ] ' /3/Kj  

G L 

According to [2], the drag coefficient of the bubble Kf = 0.5. 

It is necessary to estimate the time for the bubble to reach a velocity v given by Eq. 
(7). Assuming that the liquid resistance in Eq. (3) and its inertial force on the bubble 
(taken into account by ~) act independently, the equation of motion of a large bubble is 

written 

dv ~IXPL . 05 
dt -- g/~ 4~a ~- ( 8 )  

or in dimensionless form 

dB/dO = 1 - -  ~s, ( 9 )  

w h e r e  ~ v/v,;  0 l/t ,; t ,  ~ v ,  = = ~ ; v. is the velocity of steady ascent of the bubble, given 
g 

by Eq. (2). The solution of Eq. (9) is obtained by numerical integration with the initial 

condition e = 0, q = 0 and is shown in Fig. 2 (assuming ~ = i). 

It is unknown in advance how many bubbles are formed from an initial bubble of radius 
r and how big they are. Therefore, it is assumed that the bubbles divide into two parts of 
equal volume. Observing the motion of large bubbles shows that, after division, the components 
move apart, since one takes on a velocity larger than the initial value and the other takes 
on a smaller velocity. This does not contradict the law of momentum conservation, since 
there is another component of the process of bubble break down which takes on momentum: the 
liquid surrounding the bubble, which flows into the gap between the bubbles, retarding one 
and accelerating the other. After division, the motion of the slower component bubble is 
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followed. On reaching the velocity at which it is unstable, division is again assumed to 
occur, and the slower component is again followed. This continues until the next bubble in 
the slow-bubble relay reaches a specified distance from the intake unit (for example, half 
or all of the tank height). So as to be specific, it is assumed that the next slow bubble 
begins to rise with zero initial velocity v = 0. In this approach to a cluster of bubbles, 
it is also assumed that other bubbles in the cluster do not influence the motion of the 
chosen bubble. This is obviously not the case in practice. However, this influence may 
produce both acceleration and deceleration of the chosen slow bubble. Overall, this influence 
is averaged over all the bubbles forming the given relay (altogether, N = 10-20) and has 
little influence on to. Such division of the bubbles in half results in the greatest ascent 
time to, since the number of division cycles N is a maximum here. 

As an example, consider the ascent of a large (r ~ 1.5 m) gas bubble in liquid hydrogen. 
The parameters of hydrogen are: PL = 70 kg/m 3, ~ = 2-10 -7 m2/sec, ~ = 1.35.10 -5 kg/mosec, 
o = 2-10 -3 N/m. Suppose that the bubble is filled with a mixture of helium and gaseous 
hydrogen at a total pressure of 1 atm; then PG = 2 kg/m 3. The result of calculating the 
velocity difference of the bubbles forming a particular relay (chain) of slow bubbles is 
shown in Fig. 3~ which is plotted for g = 10-4go. The segments of the graph in Fig. 3 are 
sections of that in Fig. 2, plotted in the appropriate scale. The points of discontinuity 
of the graph correspond to successive divisions of the bubbles. In Fig. 4, curve 2 shows 
the dependence of the relay paths of slow bubbles in the cluster on the ascent time. Curve 
1 in Fig. 4 shows that, if the bubble breaks down each time into eight components, the time 
to reach the specified distance (in the given example, 6 m) is considerably less, since 
altogether five division cycles occur in this case. 

The bubble path when g = 10-3go has also been calculated. This case differs in the 
number of divisions (19 as against 15) and the time scale t,. 

Relating the total time of bubble ascent to to tfall gives to = 3.5tfall when g = 10-3go 
and to = 3.6tfall when g = 10-~go. Thus, the given simple model gives a value of to within 
the limits recommended in [i]. 

More precise agreement cannot be expected, since thedefinition of to itself is somewhat 
vague and depends on what is regarded as the end of the transient process of liquid motion 
toward the intake unit. 

In fact, bubble breakdown is irregular, and so bubbles of moderate size (r < rcr) are 
also formed; their velocity of ascent is determined by Eq. (5) and is always less than for 
large bubbles. For example, when g = 10-4go, in liquid hydrogen, rcr = 2 cm. However, this 
does not influence the estimate of to, since bubbles of radius r = rcr do not undergo 
multiple divisions -- according to Eqs. (4) and (7), rcr < r* -- and the total ascent time for 
these bubbles is found to be no larger than the previously determined to for large bubbles. 
Overall, small bubbles (for example, with r < 0.5 cm), although their ascent time is longer 
than to, do not determine the efficiency of the apparatus pumping out the liquid, especially 
when capillary intake units are used. 

NOTATION 

S, displacement of the center of gravity of the liquid, m; g, tank acceleration; go, 
acceleration due to gravity; to, time of liquid inflow to intake unit; tfall , time for liquid 
to fall to the tank bottom; ~, dimensionless coefficient, ~ = 30; o, surface tension; ~, 
viscosity of liquid; ~, kinematic viscosity of liquid; V, bubble volume; r, bubble radius; 
rcr , critical bubble radius according to Eq. (4); r *, critical radius of unstable bubble 
according to Eq. (7); p G, gas density inside bubble; OL, liquid density; ~, coefficient 
of added liquid mass; Kf, drag coefficient of bubble; V,, velocity of steady bubble ascent 
according to Eq. (2); ~, dimensionless bubble velocity; 8, dimensionless time; t,, time scale 
of ascent. 
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